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Abstract 

We formulate nonperturbative 2D gravity in the framework of Liouville theory. In particular, we 
express the specific heat Z of pure gravity in terms of an expansion of integrals on moduli spaces 
of punctured Riemann spheres. We recognize the relevant divisors on moduli spaces and write the 
integrands in terms of the Liouville action. We evaluate the integrals (rational intersections) and 
show that Z satisfies the Painlev6 I. 
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1. Classical and quantum Liouville theory 

The problem of formulating quantum Liouville theory is an open question which is 

related to crucial mathematical and physical aspects. For fixed genus some progress has 

been made in [1]. Nonperturbative results have been obtained in the framework of  matrix 

models approach to noncritical strings [2] (see [3] for reviews). 

In spite of these progresses, a nonperturbative formulation of quantum Liouville gravity 

in the continuum is still lacking. In this paper we solve the problem of  finding a topological 

expansion of  integrals involving the Liouvil le action such that it corresponds to the Painlev6 

I field. In doing this we will use important recent results in uniformization theory and 

algebraic geometry. 
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The problems arising in the continuum formulation of Liouville gravity [1-4] are essen- 

tially: 
(a) to evaluate Liouville correlators, in particular on Riemann surfaces of genus h > 2; 

(b) to perform the integration on moduli spaces; 
(c) to recover nonperturbative results from the topological expansion. 

Results from matrix models and topological gravity show that these aspects are strictly 

related with the structure of A,4h,,, the moduli spaces of Riemann surfaces of genus h 
with n punctures. An important aspect of string theory is that the quantum geometry of 
strings is described by classical geometry of moduli sapces of Riemann surfaces. A similar 
aspect arises in quantum chaos on Riemann surfaces [5]. The basic reason for this interplay 

between quantum aspects and classical geometry is that determinants are described in terms 
of geodesic lengths by means of the Selberg trace formula. Since quantum Liouville theory 

should be described by some volume form on A4h,n and as the classical Liouville action 
is the K~ihler potential for the natural (Weil-Petersson) metric on the moduli space, there 

should exist the correspondence: 

Quantum Liouville theory 

) Geometry of.Mh,n 

Classical Liouville theory. 

In this context it should be emphasized that the classical Liouville action encodes a 
quantum feature such as regularization (see [6] for a discussion on this point). This may be 

related to the fact that for the canonical transformation that relates a particle moving in a 
Liouville potential to a free particle, the effective quantum generating function is identical 

to its classical conunterpart [7], so that there are no normal ordering problems. 
Besides quantum Liouville theory also conformal field theories are intimately related 

with the geometry of moduli spaces. To explain this point let us denote by Z' a Riemann 
surface of genus h and consider the splitting of the measure on the metric 

Dg = d[m]Dg vZDg Vg~)gt;r det V z det V ~, (1.1) 

where cr is the Liouville field, d[m] represents integration on moduli coordinates and v 
represent vector fields. Since 

Ilv, v 2 = f [Ig=eO~ v/~ gab e2c~ va Vb, 
. 2  

it follows that Volg(Diff(,F,)) depends on or. In critical string theory one usually assumes 
that this dependence can be absorbed into Dg~ and then drop the Dg VZDg v ~ term. However 
this procedure has bot been fully investigated. Nevertheless the Liouville partition function 
should be an integration on the moduli space 

= f d[m]Zh(m). (1.2) Zh 
t ]  
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In this context we stress that the connection between quantum Liouville theory, CFT and 

muduli spaces arises from the Mumford isomorphism [8]. To see this first notice that 

Zh (m) should be a well-defined volume form on A,4h. On the other hand the Mumford 

isomorphism is 

Xn ~ X~I ", cn-- -6n  2 - 6 n +  1, 

where X,, = det ind 0n a r e  the determinant line bundles. The fact that the metric measure 

cannot depend on the background choice implies that Ctot = 0. The Mumford isomorphism 

implies that Zh (m) is essentially the modulo square of  a section of the bundle 

l / 

A 1.3) 
0 

k=l k=l 

where -2ciid j is the central charge of the sector j .  In the Polyakov string the matter and 

ghosts sectors have dl ---- - l d  and d2 ---- I, respectively, thus (1.3) gives for the Liouville 

sector CLiouv = 26 - d. 
An aspect related to the d = 1 barrier is that CFT matter of  central charge d can be 

expressed in terms of a b-c system of weight n with -2Cn = d [9]. The point is that since 

the maximum of -2Cn is 1, this approach works for d < 1 only. The model is exactly a CFT 

realization of  the Feigin-Fuchs approach where semi-infinite forms can be interpreted in 

terms of  b-c system vacua. Of course one can use the bosonized version of the b -c  system 

which is equivalent to the Coulomb gas approach. 

For d > I it is not possible to represent the conformal matter in terms of  a b-c system. 

In this case one can consider t h e / % y  system of weight n whose central charge is 2c,,. 

However, the representation of t he /3 -y  system in terms of  free fields is a long-standing 

problem which seems related to the d = 1 barrier. 
These aspects indicate that there is a connection between the barrier and the Mumford 

isomorphism. This is related to a similar structure considered in [10] in the framework of  

the geometrical formulation of  2D graviy [10,11] where representing elliptic and parabolic 

Liouville operators by means of  a scalar field constrains the conformal matter to be in the 

sector d < 1. 
The natural framework to investigate the aspects considered above is the theory of uni- 

formization of Riemann surfaces where Liouville theory plays a crucial role. Actually, in 

[6] it has been shown that the Liouville action appears in the correlators (intersection num- 

bers) of topological gravity [ 12]. The relationships between Liouville theory, matrix models 

and topological gravity suggest that it is possible to extend the above Liouville-topological 

gravity relationship by recovering the nonperturbative results of  matrix models by contin- 

uum Liouville theory. In our model we will reduce all aspects concerning higher genus 

contributions to punctured Riemann spheres. 

I. 1. Reduction to punctured Riemann spheres 

In [ 13] Knizhnik expressed the sum of the genus expansion as a CFT on an arbitrary N- 
sheet covering of the Riemann sphere with branch points. To each branch point he associated 
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a vertex operator and proposed to express the infinite sum on all genus (h >_ 2) as the limit 
for N ~ ~ of a 'nonperturbative' partition function. 

A natural way to get punctured spheres is by pinching all handles of a compact Riemann 
surface. Degenerate (singular) surfaces belong to the boundary of moduli spaces. These 

singularities play a fundamental role in the evaluation of relevant integrals (intersection 

theory). The fact that the classical Liouville action is the K~ihler potential for the Weil- 
Petersson metric and the structure of the boundary of moduli space suggest to consider 
integrals on .A,4h,n in the framework of the Duistermaat-Heckman integration formula [ 14]. 

Thus the specific heat of quantum Liouville theory should be a sum of integrals Z F on the 

moduli space of punctured Riemann spheres 

Mo,n = {(zl . . . . .  zn) • (3 n I zj # zk for j # k} 

Symm(n) × PSL(2, C) 

with the integrands involving the Liouville action. These remarks indicate that a theory ~t la 
Friedan-Shenker [ 15] can be concretely formulated to recover nonperturbative results in the 
continuum formulation. Actually, we will give the explicit realization of this formulation. 

We do not consider the above-mentioned points (a)-(c) separately, rather we will find the 

explicit form of the integrals Zn v on M0,n and recover nonperturbative results. Namely, we 

will show that 

f {i~as~,~ ~-4 t 3 
Z(t) = t-12k=4Z t5k_ ~ 2  J AO) FO- --2 

A40,k 

(1.4) 

satisfies the Painlev6 1 

Z2(t) - I Z " ( t )  = t (1.5) 

so that, according to the results from matrix models, Z can be identified with the specific 

heat of pure gravity. 
S~ ) in (1.4) denotes the classical Liouville action on the k-punctured Riemann sphere. 

The class [w F°] is the Poincar6 dual of a divisor on the compactified moduli space M0,k 

which is given in terms of the (2k - 8)-cycles defining the Deligne-Knudsen-Mumford 
boundary of .A/10,k. The basic tools to obtain (1.4) are classical Liouville theory and inter- 
section theory. The proof that Z ( t )  in (1.4) satisfies the Painlev6 1 is given in Section 5. 

This result reproduces in the continuum the well-known results obtained in the matrix 
model approach to pure gravity [2]. The physical consequences of the model have been 
investigated in [ 16]. In particular, it turns out that the model corresponds to quantum Liou- 
ville theory with Einstein-Hilbert action having an imaginary part ½rr. In other words (1.4) 
corresponds to introduce a (~)-vacuum structure in the genus expansion [ 16]: 

Z( t )=  ~ f T)ge-S(g)+i(O)/2rr) fr R'f~ 
h=OMeth 
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oc [ , I 
= Z ( - - I )  l-h Dge  -S(g) ~) = 57r. 

J h = 0  Meth 

385 

(I .6) 

The effect of  (-)-term is to convert the expansion into a series of alternating signs which is 

Borel summable. 

An important point is that the specific heat of our model has a physical behaviour. Ac- 

cording to standard thermodynamics, if one defines, following [2], the 'specific heat' as the 

second derivative of the free energy, it should be negative. In [16] it has been shown that 

the specific heat is negative for all t > 0. Actually the standard choice [2] for the boundary 

condition in the asymptotic expansion is always positive for sufficiently large t. It seems 

that this choice is made in order to avoid an apparently unphysical behaviour such as the 

alternating sign of  the asymptotic series. However, this 'unphysical behaviour" is only an 

effect of the perturbation expansion whereas the nonperturbative results are in complete 

agreement with basic physical principles. Thus the results of the model agree with standard 

thermodynamics and the theory is Borel summable. In our opinion, as emphasized in 116], 

the role of O-vacua is crucial for string theory in general. This aspect is related with the 

structure of  the moduli space and to unitarity problems. To understand the relation between 

unitarity and the structure of moduli space one should consider that degenerated surfaces 

correspond to Feynman diagrams. The role of  O-vacua should follow from a Feynman dia- 

gram analysis like applied to the string path-integral at the boundary of moduli spaces. We 

also notice that the presence of O-vacua should improve the convergence of  the perturbation 

theory of critical strings. In other words one should expect that string perturbation theory 

with O-vacua converges. 

Let us summarize the basic structures which will allow us to find a nonperturbative for- 

mulation in the continuum of a nontrivial quantum field theory such as 2D quantum gravity. 

We already noticed that points (a)-(c) considered above have been implicitly solved simul- 

taneously in matrix models. It is natural to think that the same can be done in the continuum. 

However, in general it is technically very difficult to perform explicit integrations on moduli 

space. The fact that in the matrix models approach to 2D gravity relevant integrations on 

moduli spaces have been done implicitly suggests that the integrals are in some sense "easy 

to compute' .  Therefore one should expect that the relevant integrands on moduli spaces are 

a sort of  total derivatives in such a way that the integrals receive contributions only from the 

boundary of moduli spaces. Due to the structure of the Deligne-Knudsen-Mumford com- 

pactification, one expects that once point (a) is solved, relevant integrals reduce to integrals 

o n  .A~0,  n . 

Let us summarize the main steps which we wi l l  consider in order to obtain Eqs. (1.4) 

and (1.5). 
(1) First of all we observe that the K~hler potential for the Weil-Petersson volume form 

(n) is the Liouvil le action evaluated on the classical solution [17]. COwp 

• (m)l  " i * r  (n) 1 (2) In [ 18], using the restriction phenomenon [O)wp I l(~)WpJ, n > m (see Appendix A), 
and computing intersection numbers between cycles on 2t4{}.n, recursion relations for 

the Weil-Petersson volumes have been obtained. 
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(3) By a rescaling of the volumes one obtains recursion relations which are equivalent to 
a second-order nonlinear differential equation which is reminiscent of  the Painlev6 I. 

A crucial point is that the general structure of  the recursion relations associated to this 
equation is unchanged if one considers integrals of  deformed volume forms: 

(n) n-3 (n) n-4 (,oF. 
¢.Owp > OJwp A 

(4) As we will see, another crucial point is the fact that by a suitable choice of  the two-form 
w r one obtains recursion relations which are equivalent to the Painlev8 I. By deforming 

volumes one obtains in a natural way a solution for the specific heat of  2D gravity which 

has nonperturbative physical meaning. 
Our results should be useful in order to properly understand the problem of the Liouville 

measure, to recover the determinants in (1.2) (i.e. the free field content of  the theory) and the 

structure of  the reduction mechanism. We also observe that our nonperturbative formulation 
of quantum Liouville theory should be useful in order to consider some nonperturbative 

aspects of  other quantum field theories. 

2. Reduction mechanism and Riemann surfaces with symmetries 

The reduction to punctured Riemann spheres is particularly evident in topological field 
theory coupled to 2D gravity where higher genus contributions to the free energy ( 1 )h can be 

written in terms of the sphere amplitudes of  the puncture operator P [ 12,19]. The physical 
observables of the theory are the primary fields Oa (a = 0, 1 . . . . .  N - 1, O0 is the identity 

operator) and their gravitational descendents an (O,~), n = 1,2 . . . .  In the coupled system 
(_90 becomes nontrivial and it is identified with P. Denoting by/20 the minimal Lagrangian, 

the more general one is/2 =/20 + En,c~tn,c~rn(Oc~), o'O(Oa) ~ Oa,  where tn,u are coupling 
constants. With this definition one can compute correlation functions with an insertion of 
ak just by differentiation (1)h with respect to tk. Thus in general 

O O 
(cra,(O~j)" . .ad . (Oa. ) )h  = Ota,.~ Ota.,~. (1)h. 

Therefore (1)h is the crucial quantity to compute. By means of KdV recursion relations 

1 h 
( f f l (P)P)h = 2(p4)h-1 + ~ ~ (p2)h'(PZ)h-h' ,  

h = 0  

it is possible [19] to express (1)h as a sum of terms of the form (pnl)0' '"  (pnj)o/(p3)~+J-1 
J for 1 < j < 3h - 3 with the constraint ~--~k=l nk = 3( j  + h - 1). 

Reduction to punctured Riemann spheres arises also in the evaluation of V O I w p ( j ~ h ,  n).  

Indeed, at least in some cases, there is a relationship between -/~h,n, MO,n+3h and their 
volumes. 2 The first example is the geometric isomorphism [20] M l .  1 ~ Mo,4,  and 

2 The space ~/[h,n is not affine for h > 2. Conversely the space .A/[o, k is finitely covered by the affine 

space V ~k) defined in (3.3). Thus for h > 2 they are not geometrical isomorphisms between Mh,n and 
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Volwp(-A/[I,  I ) : 2 Volwp(Jk40.4) .  (2. I ) 

To understand this result it is sufficient to recall that the ~-  function enters in the expression 

of the uniformizing connection of the once punctured torus Z'j, I (note that $) is a solution 
of the KdV equation) 

Tr,., = ½(~)(r,z) + c ( r ) ) ,  

where c(r)  is accessory parameter for Xj,i. Eq. (2.1) follows from the fact that Ts~] is 
related to the uniformizing connection Tro.4 of the Riemann sphere with four punctures 

since ~v maps Z'l,] two-to-one onto the four punctured Riemann sphere. Let us notice that 

another isomorphism is [21] 3//2.0 ~ M0,6. 
There is another way to understand why punctured spheres play a crucial role in 2D 

gravity. The point is to notice that equal size triangulated Riemann surfaces considered 
in matrix models can be realized in terms of thrice punctured spheres [22]. This aspect is 

related to arithmetic surfaces theory [22,23]. In this context one should investigate whether 
this kind of surface has some suitable symmetry to define antiholomorphic involution. 

This question is important in order to investigate Osterwalder-Schrader positivity. This is 
connected with the problem of defining the adjoint in higher genus that, on the sphere, 

can be done using the natural antinvolution z ~ 2-1. In higher genus this problem has 

been solved only on a Schottky double where there is a natural antinvolution [241. Thus 
the Osterwalder- Schrader positivity problem is connected with the existence of automor- 
phisms. In this context we note that the boundary components of moduli space have natural 

automorphisms, in particular curves with elliptic tails have the automorphism x ~ - x  (see 
for example [25]). This aspect should be useful in considering the structure of tile reduction 
mechanism. 

Recently Harvey and Gonzfilez-Di6z [26] have considered loci of curves which are 
prime Galois covering of the sphere. In particular, they consider the important case of 

Riemann surface admitting nontrivial automorphisms and showed that there is a birational 
isomorphism between a subset of the moduli space .A//h and V (n) (defined in (3.3)). 

3. WeiI-Petersson volumes and Liouville action 

The relation between Liouville and uniformization theory of Riemann surfaces arises in 

considering the Liouville equation 

O~Oz(pc] = ½e ¢~j, (3.1) 

which is uniquely satisfied by the Poincar6 metric (i.e. the metric with Gaussian curvature 
-1 ) .  Let H = {wllmw > 0} be the upper half-plane and Z' a Riemann surface with 

.A/[o,n+3h. However, in principle, nothing exclude the possibility to express Volwp(.A/[hm) in terms of 
Volwp (.A/[ 0,n+3h ). 



388 M. Matone /Journal of Geometry and Physics 21 (1997) 381-398 

negative Euler  characteristic (i.e. X (Z')  --- 2 - 2h - n < 0). Since the Poincar6 metric on 

H is ds 2 = ( Imw)-2 [  dwl 2, we have 

e~Od_ [ J/S/l' 12 

( i m J ~ l ) 2 '  

where J n  I is the inverse of  the uni formiz ing  map JH : H ~ Z'. 

Let us introduce the n -punc tured  R iemann  sphere Z'0.n = C \ [ z l  . . . . .  Z,,}, n >_ 3,where 

------ C tO {oo}. Its modul i  space is the space of  classes of  isomorphic Z'0,n's, that is 

.A/lo,n = {(Zl . . . . .  Zn) ~- CnlZj ~: Zk for j 5/= k}/Symm(n) x PSL(2, C), (3.2) 

where Symm(n) acts by permut ing  z i . . . . .  Zn whereas P S L  (2, C) acts by l inear fractional 

t ransformations.  By PSL(2 ,  C) we can recover the ' s tandard normal iza t ion ' :  zn-2  --  

0, Zn-l --  1 and Zn --  oo. Let us introduce the classical Liouvil le  tensor or Fuchsian 

projective connect ion  

l~p2 TF(z)  = {JH I ,z} = ¢Pclzz -- 2 clz" 

In the case of  the punctured Riemann  sphere we have 

, 

TF(z)  = 2(Z Zk) 2 "[- ' 
k=l Z -- Zk 

where the coefficients cl . . . . .  Cn-j, called accessory parameters, satisfy the constraint  

n - I  n-1 

= o ,  Ez c :l- n. 
j=]  j = l  

These parameters are defined on the space 

V (n) = { ( Z l  . . . . .  Zn-3 ~- cn-3IZj :/: O, 1; Zj :/: Zk, f o r j  -~ k}. (3.3) 

Note that 

./kdO,n ~- v(n) /Symm(n),  (3.4) 

where the action of Symm(n) on V Im is defined by compar ing  (3.2) with (3.4). 

Let us now consider  the compactif icat ion V (n) in the sense of  D e l i g n e - K n u d s e n - M u m f o r d  

[27]. The divisor at the boundary  

D = v ( n ) \ v  (n), 

decomposes  in the sum of  divisors DI . . . .  Din~2 l_ j, which are subvarieties of  real d imens ion  

2n - 8. The locus Dk consists of  surface that split, on removal  of  the node, into two Riemann  

spheres with k + 2 and n - k punctures.  In particular, Dk consists of C(k) copies of  the 
v ( n - k )  n space -~(k+2) × where C(k) = ( k + l )  for k : 1 . . . . .  ½ (n - 3 ) , n  odd. In the case 

of n even the unique  difference is for k = ½n - 1, for which we have C(½n - 1) = 
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I ( {~ ] An important property of  the divisors Dk's is that their image provides a basis in 

H2n-8 (.Axiom, ~). 
In the case of the Riemann sphere with n-punctures Z'0,~, Eq. (3.1) follows from the 

Liouville action [ 171: 

V 

S ~nl=l im ] [ ( 0 , ~ p 0 ; ~ v + e  ¢ ) + 2 n " ( n l o g r + 2 ( n - 2 )  log [ logr l )  

where Z r = n-I o,n ZO,n\(Ui=l { z l l z - z i l  < r}U{zllzl > r - l } ) .  This action, evaluated on the 

classical solution, is the K~ihler potential for the Weil-Petersson two-form on V ~n) [ 17]: 

• n 3 

C°wP = = ~,k=l ~ d~.j A dzk. (3.5) 

Let us consider the volume of moduli space of punctured Riemann spheres 

1 f ,,-~ 1 
_ _  j (hi _ , ~ n ) , n _ 3 n [ M o . ~ l .  

V o l w p ( . ~ 0 . n )  - -  (n - 3)! °)wP -- (n 3)! l°)wpl 

Jk40.n 

Recently it has been shown that [18]: 

-~ 7r2(n-3) Vn 
V°lwp('A/[O'n) = .V°lwp(V(n)) -- n!(n - 3)! '  n > 4, 

.,.r 2(3-n) [, ,(n) l n -3  where V~ = ,, twwp j N [V (n)] satisfies the recursion relations: 

V 3 = l ,  

l ~ k ( n - k - 2 )  ( i ) ( n - 4 ) V k + 2 V n _  k, n>4 ._  (3.6) vn 
2k=l  k +  I k 1 

As we will see, the basic structures underlying Eq. (3.6) are classical Liouville theory and 

intersection theory 

. V o l u m e s  g e n e r a t i n g  f u n c t i o n  

We now consider the differential equation associated with (3.6)• In order to do this we 

½ 
ak = k > 3, (4.1) 

(k - 1)((k - 3)!) 2, 

(3.6) assumes the simple form 

1 1 n ( n  - 2)  n-3 
a3 = ~ an = 2 (n ~-1)~  - 3) Z ak+2an-k' > 4. (4.2) 

k=l 

note a crucial property of  (3.6). Namely, defining 
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Defining the generating function for Weil-Petersson volumes 

OQ 

g(t) = Z aktk- l ,  (4.3) 
k = 3  

one can check that Eq. (4.2) implies that the function g satisfies the differential equation 

, gi2 t _ ggl + gl t 
g = (4.4) 

t (t - g) 

4.1. Volume deformation 

We now consider the deformation of  the Weil-Petersson volume form. First of all note 

that by (3.5) and (4.3) 

oo --- (k) k - 3  

f (4.5) 
,=3 ( k -  _ \ } 

.M0,k 

, _  I Function g(t) resembles a topological expansion of  string theory. where 'fM0.31 = ~. 
Furthermore, the structure of  Eq. (4.4) suggests that with a suitable deformation of  the 

volume form it should be possible to obtain the Painlev6 I. These remarks indicate that 

it is possible to recover the specific heat of  pure gravity in the continuum. Actually, we 

will recover the Painlev6 I by classical Liouville theory. In particular, we will obtain the 

recursion relations for the Painlev4 I by performing a suitable deformation of  the Weil- 
(n) n-3 

Petersson volume form Wwp . Remarkably, as we will show, it is possible to perform the 

substitution 

(n) n-3 (n) n -4  (.oF 
r.Owp ;' (.Owp A (4.6) 

in (4.5) without changing the general structure of  (4.2); that is we will obtain recursion 

relations of  the following structure: 

n - 3  

= C(n) Z A k + z A n _ k ,  n > 4. (4.7) An 
k = l  

We stress that this is a crucial point in our construction. 

The first problem now is to find a suitable expansion for the Painlev6 I field such that 
the structure of the associated recursion relation be the same of  (4.7). Remarkably this 
expansion exists, namely 

oo 

f ( t )  = t - 1 2  Z d k t 5 k .  (4.8) 
k = 3  

It is interesting that in searching the expansion reproducing the general structure of (4.2), 
which is a result obtained from continuous Liouville theory, one obtains an expansion 
involving only positive powers of t. Withthis expansion the Painlev6 I 

f2 ( t )  - ½ f ' ( t )  = t (4.9) 
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is equivalent to the recursion relations 3 

3 n -3  
= I 

dn (12 - 5n)(13 - 5n) d k + 2 d n - k ,  d3 = - ~ ,  (4.10) 
k=l 

which has the same structure of (4.2). Note that expansion (4,8) corresponds to the initial 

conditions f ( 0 )  = f '  (O) = 0. 

We now find the volume form reproducing (4.10). To understand which kind of modifi- 
(n)" 3 

cation to COwp can be performed without changing the basic structure of (4.2) we recall 
the main steps in [18] to obtain (3.6). As we will see, Eqs. (4.1 1) and (4.13) below (which 
will be derived in the Appendix A) are crucial steps to compute Weil-Petersson volumes 
and their deformation. 

• (n) , 
Le t  D w p  be the (2n - 8)-cycle dual to the Weil-Petersson class l~Owp 1. To compute the 

volumes it is useful to expand Dwp in terms of the divisors Dk in the boundary of the moduli 
space. It turns out that [18]: 

71.2 [n/2J- I 
- -  Z k ( n  - k - 2)Dk. (4.1 1) Dwp 

n - i  k=l 

Let us set D In) = Dwp/yr 2 and (.o ~n) = Wwp/Zrln), 2 so that [oJ (n)] c H2(M0.nQ) .  We now 

consider 

Vn = [oj(n)ln-3 n IV(n) l = [o)(n)] n--4 n ([60 (n)] n [~-(n)]) 

and notice that since 

1~o ¢'~] n IV Cn)] = D (") • V In) = D u'), 

it follows that 

[n/21-I 1 
Vn = [o)(n)] n - 4 0  [D (n)] - -  

X--' 
Z__., k ( n  - k - 2)Ion(n)] n-4 N [Dk].  

1 11 k=l 

Since Dk consists of C ( k )  copies of space V (k+2) x V (n-k), we have 

[n/2]-  1 
1 X-" k (n  - -  [~(k+2) × -v(n-k)] - -  z -- k 2)C(k)[co(n)]  n - 4  f3 (4.12) g, 

n - - I  g....a 
k=l 

that by [ 1 8] 

[0)(")1 n - 4  ("1 I V  (k+2) X -~-(n-k)] 

= [w (k+2) + w(n-k)] n-4 A [-~(k+2) x V(n-k)], 

= (kn -41 )([w(k+Z)]k-1 A V(k+Z))([w("-k)]n-k-3 n V(n-k)), (4.13) 

coincides with (3.6). 

3 Notice that ( -  1 )kdk is positive. 
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5. Liouville F-models  and  2D gravity 

A crucial point is that there exist a systematic way to deform the volume form without 

changing the general structure of  the associated recursion relations. We note that our method 

should be useful to investigate also some general algebraic-geometrical structure and some 

aspects concerning nonlinear differential equations. 

Let us introduce the divisor 

DE _ 1 In/21-1 
Z k(n - k - 2)F(n ,k )Dk ,  (5.1) 

n - 1  k=l 

where F(n, k) is a function to be determined. Let [w F] be the Poincar6 dual to D F and 

define 

f f (i-OOS~7)~ n-4 zF =__ o)(rl)n 4 A ojF =__ \ ~ 2  ] A CO F, n > 4. (5.2) 

.A.'[O. n .A.'[O, n 

A basic point is that we can use the recursion relation (4.2) to evaluate (5.2) and obtain 

nonperturbative results. This possibility is based on the fact that 

[w(n)ln-3 N [-~(n)] = [w(n)ln_ 4 N [D(n)], 

implying that the general structure of  (4.2) (the same of  (4.10)) is unchanged under the 

substitution 

OO (n)n-3 ~ O) (n)n-4 /k (.O F . (5.3) 

To see this note that 

Z F = l [ o g ( n ) ] n - 4  A [ D  F] 

1 I n / 2 ] -  1 

-- (n - l)n! Z F(n, k)k(n - k - 2)[o~(n)] n-4 A [Dk]. (5.4) 
k = l  

On the other hand by (4.13) 

In /21-  I 

Z F(n, k)k(n - k - 2)[w(n)] n-4 71 [Dk] 
k= l  

n-~ ( n ) ( n - 4 ) V k + 2 V n _ k ,  (5.5) _---1 F ( n , k ) k ( n - k - 2 )  k + l  k 1 
2k=l  

and by (4.1) 

(n - 4) ! n-3 
zF -- -~n ~ -~ Z F(n,k)ak+2an-k, n > 4. (5.6) 

k = l  
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Let us define the 'Liouville F-models '  

oG 
zF,°t(x) = X -°t Z x k Z  F, 

k = 3  

where x is the coupling constant. These models are classified by a, F(n, k) and Z F 
3 "  

5.1. Pure gravi~: explicit solution 

Z(t)  = zF°'~o (t5), 

where 

We now show that Z F'ce (x) includes pure gravity. In fact, putting 

12 

Fo(n, k) = 

we have, by (5.6) and (5.9), 

Z F° ~, 3 -- 

6 ( n -  1) Z F° Z F° 
k + 2  n - k  

(12 - 5n)(13 - 5n)(n - 4)! ak+2a,, k 

n - 3  3 F~ Fo Fo 
Zn : ( 1 2 -  5 n ) ( 1 3 -  5n) ~ Zk+2Zn-k" n > 4 

k = l  

so that by (4.8)-(4.10) 

o~ .--  (k) k - 4  

Z ( t ) = t - 1 2 Z t 5 k  k = 4  __f ~ 7 ]  (lOOScl ~ A °gF°  - -  - -  t 3  2 

.A.-10A 

satisfies the Painlev6 I 

Z2(t)  -- ½Z"(t) : t 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.1 i) 

(5.12) 

with initial conditions Z(O) = Z'(O) = O. We observe that other initial conditions can be 

reproduced by a suitable choice of  F(n, k). 

6. Outlook 

In conclusion we have introduced a class of  Liouville models by defining a suitable D F 
divisor which is a deformation of  the Weil-Petersson divisor parameterized by c~, F(n, k) 
and Z~. These Liouville F-models include pure gravity. In this context we recall that the 

Liouville action arises also in the correlators of  topological gravity [6]. 
We note that our results should be useful in solving problems (a) and (b) considered in 

Section 1 (point (c) is solved by (5.1 l) and (5.12)). In particular, connecting the coefficients 
of  the local expansion (5.11) with the related coefficients of  the asymptotic expansion 
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derived in [ 16], one obtains a relation between the genus h contribution to the free energy 

(related to the Liouville density Zh(m) in (1.2)) and Z F. This formula should be also useful 

to clarify the details of the mechanism which allows us to reduce integrals on the moduli 
space of higher genus Riemann surfaces to integrals on the moduli space of punctured 

Riemann spheres. In this context we note that the divisor associated to the specific heat in 
the asymptotic (genus) expansion has been found in [28]. By investigating the structure of 

this divisor, it should be possible to recover the field content of the Liouville path-integral. 
Let us comment about a possible related nonperturbative formulation on the upper half- 

plane H (see also [6]). Punctures on the Riemann sphere correspond to real points J~4J(zk) 

on the boundary of H. Correspondingly one can define hyperelliptic Riemann surfaces. In 
the case of infinite genus one can apply McKean-Trubowitz theory [29] which is related 

to matrix models. This suggests a nonperturbative formulation on H with the image of 
punctures related to the eigenvalues of the Hermitian matrix models. In some discrete 

version of this approach one should be able to connect this formulation with the ideas at 
the basis of [30]. 

Finally, we note that the algebraic-geometrical approach to 2D gravity considered in this 
paper is related to other interesting aspects such as anyon theory [31 ], compactification of 

configuration spaces [32] and quantum cohomology [33]. We also observe that Eq. (4.4) 
has been essentially solved in [34]. 
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Appendix A. Weil-Petersson divisor 

Let us start by proving the restriction phenomenon. Namely we show that from the natural 
embedding 

i : --~(m) ---9. --~(m) × * ~ v ( m )  x W (n-m+2) .----> o F  (n) ~ V (n), n > m, 

where • is an arbitrary point in ~-(n--m+2), it follows that [20,35]: 

(m)l .,f . (n )  l Wwpl = t tWWpl, n > m, (A.1) 

which has been used in Eq. (4.13). In order to prove (A. 1) we need to consider the Fenchel- 
Nielsen parametrization of the Teichmiiller space (see for example [36]). Let { Pi } be a set 
of surfaces homeomorphic to C minus three open discs. Each Pi has a hyperbolic structure 
with geodesic boundary whose length may be arbitrarily prescribed in the interval [0, c~) 
(a length 0 corresponds to a puncture). Let 

Z'0,n = C\{Zl . . . . .  zn -3 ,  0, 1], 
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be a genus 0 surface with n > 3 punctures. It can be obtained by glueing {Pi}i=J ..... ,, 2 

identifying the different boundary components in n - 3 geodesics on ~0.,,- Clearly, to 

completely characterize the glueing procedure, we need also to distinguish twisted boundary 

components. To this end, for each geodesic ot i we denote by ~i the coordinate describing 

twists from an arbitrary reference position. Denoting by li -- lc~, the length of each geodesic, 
we define the Fenchel-Nielsen form 

n - 3  n 3 
In ) = E A % = E l j  d# A dOj, 

j = l  j=l  

where Oj is the twisting angle (it has been proved that W~N ) does not depend on the particular 

geodesical dissection of  Zo.n). 
(n) The observation that the smooth reduction of COFN to 0V -~n) is performed letting one 

or more geodesical lengths go to 0 giving a well-defined geodesical dissection, implies 
(m),  i . ,  (n), °)FN I ~- IO)FN ], n > m. Eq. (A.I)  follows by noticing that [20,35]: 

( n ) ~  , (n),  
O)FN l m [O)Wp l 

in H Z ( v  In), N). 

Now, following [181, we derive (4.11). Let us consider the embedding of Z0.,, k in 
v(n k + l )  

EO,n k ) V (n-k+l),  Z ~ (Zl . . . . .  Zn -k -3 ,  Z) G V (n k + l )  ,,7, E ~O,n-k.  

Observer that ZO.n-J embeds into V ('). There exists a natural embedding in V (m also for 

the surfaces Z o . , - k ,  k = 2 . . . . .  [½n] - 1, namely 

~O.n-k ~ v(n k + l )  ~ V ( k + l )  x ~ ( n - k + l )  __). Dk_l _+ ~(n)V , 

k = 2 . . . . .  [ ½ , ] -  i .  (A.2  

The closure of the image of Z'0.,,-k in V (') defines a 2-cycle Ck isomorphic to C. By (A. 1 ) 

and (A.2) it follows that 

(11) 1 Wwe j A [Ck] = COwp = t COwp = Wwp , (A.3) 

i ~'O.n-k ~'0,n k Z(),n- k 

• (n) 
where A denotes the topological cap product. Note that tWwp A [Ck] = Dwp • Ck where • 

denotes the topological interesection (see for example [37]). 
To perform the last integral we use (3.5) and the asymptotic behaviour of  the classical 

Liouville action when the punctures coalesce [38]: 

] + O l , Zi----)Zk, k ~ - n ,  
o(n). zi - zk Izi zkl 

0:iacl tzl . . . . .  Zn-3) = (A.4) (,+,,) - -  - I - 0  , Zi -----~ OQ. 
".?,i 
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We have 4 

/" (n-k+J) 2~1 r~01im / dOz._k_2S~-k+L)dzn-k-2, DWp" Ck = ] COwp = -- 

C C\Ar 

where  A r is the union o f n  - k - 1 disks o f  radius r centred at zt . . . . .  Zn-k-3, O, 1. 
Let  us set z = Zn-k-2. Since  OzS~ -k+J) E C~(C\Ar ) ,  we can apply Stokes theorem 

f dazS~l -k+l) dz 

C\A~ 

f (n-k+l  : 0 z Scl f , o ( n - k + l ) j  ) dz - OZ~cl az  = 2ire 2 - 2izr2(n - k + 1). 

OAr ac 

O n  the  o t h e r  h a n d  

l im f dOzS~ -k+l) dz = 0 
r ~ O J  

Z~r 

so  t h a t  

DWp • Ck : 7rZ(n -- k - 2). (A.5) 

Eq. (4.11) fol lows immedia te ly  f rom (A.5) and f rom the nonsingular  matr ix Ajk = Cj • Dk 
of  intersect ion numbers  be tween  the 2-cycles  Cj and the (2n - 8)-cycles  Dk [ 18] 

A = 

n - I  0 0 0 

n - 4  1 0 0 

n - 4  - 1  1 0 

n - 5  0 - 1  1 

n - [n /2]  0 0 0 

where  Cj • DI : n - j - 1 for j > 4. 

. . .  0 0 

. . .  0 0 

. . .  0 0 

. . .  0 0 , 

. . .  --1 1 

(A.6) 
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